本文主要记录对Pandas DataFrame进行打印时的一些实例。以从BaoStock获取的sh.600000浦发银行2000年前的日线数据为例,共有36行(不含表头)*17列数据完整数据如下表所示:
date | open | high | low | close | preclose | volume | amount | adjustflag | turn | tradestatus | pctChg | peTTM | pbMRQ | psTTM | pcfNcfTTM | isST |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1999-11-10 | 2.7232630000 | 2.7509572000 | 2.4924780000 | 2.5617135000 | 0.9231400000 | 174085055 | 4859102435.0000 | 2 | 54.401580 | 1 | 177.500000 | 77.815386 | 17.418388 | 22.359317 | 0.000000 | 0 |
1999-11-11 | 2.5460201200 | 2.6198713200 | 2.5414044200 | 2.5580209400 | 2.5617135000 | 29403491 | 821582199.0000 | 2 | 9.188591 | 1 | -0.144147 | 77.703220 | 17.393280 | 22.327087 | 0.000000 | 0 |
1999-11-12 | 2.5718680400 | 2.6124862000 | 2.5635597800 | 2.5894077000 | 2.5580209400 | 15007963 | 421591623.0000 | 2 | 4.689988 | 1 | 1.226995 | 78.656634 | 17.606695 | 22.601039 | 0.000000 | 0 |
1999-11-15 | 2.6032548000 | 2.6078705000 | 2.5570978000 | 2.5617135000 | 2.5894077000 | 11921071 | 332952812.0000 | 2 | 3.725335 | 1 | -1.069516 | 77.815386 | 17.418388 | 22.359317 | 0.000000 | 0 |
1999-11-16 | 2.5737143200 | 2.5820225800 | 2.4444747200 | 2.4509367000 | 2.5617135000 | 23223120 | 628908296.0000 | 2 | 7.257225 | 1 | -4.324327 | 74.450397 | 16.665160 | 21.392428 | 0.000000 | 0 |
1999-11-17 | 2.4463210000 | 2.5090945200 | 2.4343201800 | 2.5090945200 | 2.4509367000 | 10052566 | 268995055.0000 | 2 | 3.141427 | 1 | 2.372885 | 76.217016 | 17.060605 | 21.900045 | 0.000000 | 0 |
1999-11-18 | 2.5109408000 | 2.5460201200 | 2.4721689200 | 2.4943242800 | 2.5090945200 | 8446529 | 229577879.0000 | 2 | 2.639540 | 1 | -0.588668 | 75.768351 | 16.960175 | 21.771126 | 0.000000 | 0 |
1999-11-19 | 2.5386350000 | 2.5414044200 | 2.4740152000 | 2.4814003200 | 2.4943242800 | 5374994 | 145887121.0000 | 2 | 1.679686 | 1 | -0.518139 | 75.375769 | 16.872298 | 21.658322 | 0.000000 | 0 |
1999-11-22 | 2.4814003200 | 2.4878623000 | 2.4278582000 | 2.4417053000 | 2.4814003200 | 5535421 | 147086153.0000 | 2 | 1.729819 | 1 | -1.599697 | 74.169981 | 16.602391 | 21.311854 | 0.000000 | 0 |
1999-11-23 | 2.4417053000 | 2.4509367000 | 2.4093954000 | 2.4417053000 | 2.4417053000 | 3843966 | 101224493.0000 | 2 | 1.201239 | 1 | 0.000000 | 74.169981 | 16.602391 | 21.311854 | 0.000000 | 0 |
1999-11-24 | 2.4407821600 | 2.4509367000 | 2.4010871400 | 2.4398590200 | 2.4417053000 | 4098001 | 107344461.0000 | 2 | 1.280625 | 1 | -0.075616 | 74.113898 | 16.589838 | 21.295739 | 0.000000 | 0 |
1999-11-25 | 2.4278582000 | 2.4610912400 | 2.4020102800 | 2.4370896000 | 2.4398590200 | 5725292 | 150528185.0000 | 2 | 1.789154 | 1 | -0.113510 | 74.029773 | 16.571007 | 21.271567 | 0.000000 | 0 |
1999-11-26 | 2.4398590200 | 2.4610912400 | 2.4140111000 | 2.4417053000 | 2.4370896000 | 2282685 | 60508935.0000 | 2 | 0.713339 | 1 | 0.189398 | 74.169981 | 16.602391 | 21.311854 | 0.000000 | 0 |
1999-11-29 | 2.4417053000 | 2.4767846200 | 2.4204730800 | 2.4306276200 | 2.4417053000 | 2681243 | 71099577.0000 | 2 | 0.837888 | 1 | -0.453689 | 73.833482 | 16.527069 | 21.215165 | 0.000000 | 0 |
1999-11-30 | 2.4278582000 | 2.4463210000 | 2.4103185400 | 2.4370896000 | 2.4306276200 | 2371355 | 62335742.0000 | 2 | 0.741048 | 1 | 0.265855 | 74.029773 | 16.571007 | 21.271567 | 0.000000 | 0 |
1999-12-01 | 2.4287813400 | 2.4832466000 | 2.4195499400 | 2.4555524000 | 2.4370896000 | 2865195 | 76287992.0000 | 2 | 0.895373 | 1 | 0.757579 | 74.590605 | 16.696545 | 21.432715 | 0.000000 | 0 |
1999-12-02 | 2.4481672800 | 2.4666300800 | 2.4204730800 | 2.4241656400 | 2.4555524000 | 1938487 | 51110241.0000 | 2 | 0.605777 | 1 | -1.278196 | 73.637191 | 16.483130 | 21.158763 | 0.000000 | 0 |
1999-12-03 | 2.4232425000 | 2.4601681000 | 2.4186268000 | 2.4333970400 | 2.4241656400 | 2552574 | 67291877.0000 | 2 | 0.797679 | 1 | 0.380809 | 73.917607 | 16.545899 | 21.239337 | 0.000000 | 0 |
1999-12-06 | 2.4278582000 | 2.4324739000 | 2.3632384000 | 2.3687772400 | 2.4333970400 | 6983999 | 180516074.0000 | 2 | 2.182500 | 1 | -2.655541 | 71.954696 | 16.106517 | 20.675318 | 0.000000 | 0 |
1999-12-07 | 2.3632384000 | 2.3863169000 | 2.3540070000 | 2.3632384000 | 2.3687772400 | 3955769 | 101467905.0000 | 2 | 1.236178 | 1 | -0.233825 | 71.786446 | 16.068855 | 20.626974 | 0.000000 | 0 |
1999-12-08 | 2.3632384000 | 2.3780086400 | 2.3540070000 | 2.3567764200 | 2.3632384000 | 2236538 | 57214358.0000 | 2 | 0.698918 | 1 | -0.273436 | 71.590155 | 16.024917 | 20.570572 | 0.000000 | 0 |
1999-12-09 | 2.3540070000 | 2.3586227000 | 2.3355442000 | 2.3410830400 | 2.3567764200 | 2564635 | 65136972.0000 | 2 | 0.801448 | 1 | -0.665883 | 71.113449 | 15.918210 | 20.433596 | 0.000000 | 0 |
1999-12-10 | 2.3410830400 | 2.4093954000 | 2.3281590800 | 2.3973945800 | 2.3410830400 | 3553913 | 91041273.0000 | 2 | 1.110598 | 1 | 2.405358 | 72.823985 | 16.301100 | 20.925098 | 0.000000 | 0 |
1999-12-13 | 2.3983177200 | 2.4417053000 | 2.3632384000 | 2.3927788800 | 2.3973945800 | 7058409 | 184655963.0000 | 2 | 2.205753 | 1 | -0.192527 | 72.683777 | 16.269716 | 20.884811 | 0.000000 | 0 |
1999-12-14 | 2.3724698000 | 2.4001640000 | 2.3724698000 | 2.4001640000 | 2.3927788800 | 1618462 | 41845145.0000 | 2 | 0.505769 | 1 | 0.308642 | 72.908110 | 16.319931 | 20.949270 | 0.000000 | 0 |
1999-12-15 | 2.4001640000 | 2.4832466000 | 2.3909326000 | 2.4417053000 | 2.4001640000 | 6797886 | 180407899.0000 | 2 | 2.124339 | 1 | 1.730772 | 74.169981 | 16.602391 | 21.311854 | 0.000000 | 0 |
1999-12-16 | 2.4463210000 | 2.4463210000 | 2.3955483000 | 2.4001640000 | 2.4417053000 | 3616200 | 94601476.0000 | 2 | 1.130062 | 1 | -1.701326 | 72.908110 | 16.319931 | 20.949270 | 0.000000 | 0 |
1999-12-17 | 2.4001640000 | 2.4121648200 | 2.3549301400 | 2.3613921200 | 2.4001640000 | 3565329 | 91807404.0000 | 2 | 1.114165 | 1 | -1.615385 | 71.730363 | 16.056301 | 20.610859 | 0.000000 | 0 |
1999-12-21 | 2.3493913000 | 2.3586227000 | 2.3207739600 | 2.3300053600 | 2.3613921200 | 4215311 | 106523995.0000 | 2 | 1.317285 | 1 | -1.329164 | 70.776950 | 15.842887 | 20.336907 | 0.000000 | 0 |
1999-12-22 | 2.3300053600 | 2.3401599000 | 2.3124657000 | 2.3216971000 | 2.3300053600 | 3083548 | 77614086.0000 | 2 | 0.963609 | 1 | -0.356577 | 70.524575 | 15.786395 | 20.264390 | 0.000000 | 0 |
1999-12-23 | 2.3263128000 | 2.3355442000 | 2.2801558000 | 2.2875409200 | 2.3216971000 | 4161561 | 103557903.0000 | 2 | 1.300488 | 1 | -1.471169 | 69.487037 | 15.554150 | 19.966266 | 0.000000 | 0 |
1999-12-24 | 2.2709244000 | 2.3143119800 | 2.2700012600 | 2.2847715000 | 2.2875409200 | 2832485 | 70142724.0000 | 2 | 0.885152 | 1 | -0.121068 | 69.402912 | 15.535319 | 19.942094 | 0.000000 | 0 |
1999-12-27 | 2.2847715000 | 2.3078500000 | 2.2616930000 | 2.2690781200 | 2.2847715000 | 2233778 | 55170691.0000 | 2 | 0.698056 | 1 | -0.686869 | 68.926205 | 15.428612 | 19.805118 | 0.000000 | 0 |
1999-12-28 | 2.2653855600 | 2.3152351200 | 2.2616930000 | 2.2709244000 | 2.2690781200 | 3176686 | 78430313.0000 | 2 | 0.992714 | 1 | 0.081369 | 68.982288 | 15.441166 | 19.821232 | 0.000000 | 0 |
1999-12-29 | 2.2810789400 | 2.3050805800 | 2.2681549800 | 2.2764632400 | 2.2709244000 | 2284237 | 56436027.0000 | 2 | 0.713824 | 1 | 0.243900 | 69.150538 | 15.478827 | 19.869577 | 0.000000 | 0 |
1999-12-30 | 2.2986186000 | 2.3069268600 | 2.2755401000 | 2.2847715000 | 2.2764632400 | 2333169 | 57888237.0000 | 2 | 0.729115 | 1 | 0.364964 | 69.402912 | 15.535319 | 19.942094 | 0.000000 | 0 |
默认打印结果
我们将数据,保存到df中,直接打印,结果如下:
print(df)
date open high ... psTTM pcfNcfTTM isST
0 1999-11-10 2.723263 2.750957 ... 22.359317 0.0 0
1 1999-11-11 2.546020 2.619871 ... 22.327087 0.0 0
2 1999-11-12 2.571868 2.612486 ... 22.601039 0.0 0
3 1999-11-15 2.603255 2.607871 ... 22.359317 0.0 0
4 1999-11-16 2.573714 2.582023 ... 21.392428 0.0 0
5 1999-11-17 2.446321 2.509095 ... 21.900045 0.0 0
6 1999-11-18 2.510941 2.546020 ... 21.771126 0.0 0
7 1999-11-19 2.538635 2.541404 ... 21.658322 0.0 0
8 1999-11-22 2.481400 2.487862 ... 21.311854 0.0 0
9 1999-11-23 2.441705 2.450937 ... 21.311854 0.0 0
10 1999-11-24 2.440782 2.450937 ... 21.295739 0.0 0
11 1999-11-25 2.427858 2.461091 ... 21.271567 0.0 0
12 1999-11-26 2.439859 2.461091 ... 21.311854 0.0 0
13 1999-11-29 2.441705 2.476785 ... 21.215165 0.0 0
14 1999-11-30 2.427858 2.446321 ... 21.271567 0.0 0
15 1999-12-01 2.428781 2.483247 ... 21.432715 0.0 0
16 1999-12-02 2.448167 2.466630 ... 21.158763 0.0 0
17 1999-12-03 2.423243 2.460168 ... 21.239337 0.0 0
18 1999-12-06 2.427858 2.432474 ... 20.675318 0.0 0
19 1999-12-07 2.363238 2.386317 ... 20.626974 0.0 0
20 1999-12-08 2.363238 2.378009 ... 20.570572 0.0 0
21 1999-12-09 2.354007 2.358623 ... 20.433596 0.0 0
22 1999-12-10 2.341083 2.409395 ... 20.925098 0.0 0
23 1999-12-13 2.398318 2.441705 ... 20.884811 0.0 0
24 1999-12-14 2.372470 2.400164 ... 20.949270 0.0 0
25 1999-12-15 2.400164 2.483247 ... 21.311854 0.0 0
26 1999-12-16 2.446321 2.446321 ... 20.949270 0.0 0
27 1999-12-17 2.400164 2.412165 ... 20.610859 0.0 0
28 1999-12-21 2.349391 2.358623 ... 20.336907 0.0 0
29 1999-12-22 2.330005 2.340160 ... 20.264390 0.0 0
30 1999-12-23 2.326313 2.335544 ... 19.966266 0.0 0
31 1999-12-24 2.270924 2.314312 ... 19.942094 0.0 0
32 1999-12-27 2.284772 2.307850 ... 19.805118 0.0 0
33 1999-12-28 2.265386 2.315235 ... 19.821232 0.0 0
34 1999-12-29 2.281079 2.305081 ... 19.869577 0.0 0
35 1999-12-30 2.298619 2.306927 ... 19.942094 0.0 0
[36 rows x 17 columns]
这里就打印显示了所有行的前3列及后3列数据。如果需要打印的行数过多,则只会显示前5行及后5行的数据,例如当我们打印2020年前sh.600000的所有日线数据时,结果如下:
date open high ... psTTM pcfNcfTTM isST
0 1999-11-10 2.7232630000 2.7509572000 ... 22.359317 0.000000 0
1 1999-11-11 2.5460201200 2.6198713200 ... 22.327087 0.000000 0
2 1999-11-12 2.5718680400 2.6124862000 ... 22.601039 0.000000 0
3 1999-11-15 2.6032548000 2.6078705000 ... 22.359317 0.000000 0
4 1999-11-16 2.5737143200 2.5820225800 ... 21.392428 0.000000 0
... ... ... ... ... ... ... ...
4877 2019-12-25 11.0953874200 11.0953874200 ... 1.880224 -5.959912 0
4878 2019-12-26 11.0683034800 11.1224713600 ... 1.887905 -5.984258 0
4879 2019-12-27 11.0592755000 11.2217791400 ... 1.892513 -5.998866 0
4880 2019-12-30 11.0773314600 11.1585832800 ... 1.895585 -6.008604 0
4881 2019-12-31 11.1224713600 11.1766392400 ... 1.900194 -6.023212 0
[4882 rows x 17 columns]
打印指定的行
可以head函数选择DataFrame的前n行,n默认为5,然后进行打印:
print(df.head())
输出结果为:
date open high ... psTTM pcfNcfTTM isST
0 1999-11-10 2.723263 2.750957 ... 22.359317 0.0 0
1 1999-11-11 2.546020 2.619871 ... 22.327087 0.0 0
2 1999-11-12 2.571868 2.612486 ... 22.601039 0.0 0
3 1999-11-15 2.603255 2.607871 ... 22.359317 0.0 0
4 1999-11-16 2.573714 2.582023 ... 21.392428 0.0 0
[5 rows x 17 columns]
显式设置n的值:
print(df.head(n=2))
输出结果为:
date open high ... psTTM pcfNcfTTM isST
0 1999-11-10 2.723263 2.750957 ... 22.359317 0.0 0
1 1999-11-11 2.546020 2.619871 ... 22.327087 0.0 0
[2 rows x 17 columns]
同样,可以使用tail函数,选择后n行进行打印:
print(df.tail())
输出结果为:
date open high ... psTTM pcfNcfTTM isST
31 1999-12-24 2.270924 2.314312 ... 19.942094 0.0 0
32 1999-12-27 2.284772 2.307850 ... 19.805118 0.0 0
33 1999-12-28 2.265386 2.315235 ... 19.821232 0.0 0
34 1999-12-29 2.281079 2.305081 ... 19.869577 0.0 0
35 1999-12-30 2.298619 2.306927 ... 19.942094 0.0 0
[5 rows x 17 columns]
也可以使用iloc选择指定的行,进行打印,例如选择第2到4行:
print(df.iloc[2:5])
输出结果为:
date open high ... psTTM pcfNcfTTM isST
2 1999-11-12 2.571868 2.612486 ... 22.601039 0.0 0
3 1999-11-15 2.603255 2.607871 ... 22.359317 0.0 0
4 1999-11-16 2.573714 2.582023 ... 21.392428 0.0 0
[3 rows x 17 columns]
再如选择倒数第2行打印:
print(df.iloc[-2:-1])
输出结果为:
date open high ... psTTM pcfNcfTTM isST
34 1999-12-29 2.281079 2.305081 ... 19.869577 0.0 0
[1 rows x 17 columns]
打印指定的列
可以通过iloc打印指定的列,例如打印前两列:
print(df.iloc[:, :2])
输出结果为:
date open
0 1999-11-10 2.723263
1 1999-11-11 2.546020
2 1999-11-12 2.571868
3 1999-11-15 2.603255
4 1999-11-16 2.573714
5 1999-11-17 2.446321
6 1999-11-18 2.510941
7 1999-11-19 2.538635
8 1999-11-22 2.481400
9 1999-11-23 2.441705
10 1999-11-24 2.440782
11 1999-11-25 2.427858
12 1999-11-26 2.439859
13 1999-11-29 2.441705
14 1999-11-30 2.427858
15 1999-12-01 2.428781
16 1999-12-02 2.448167
17 1999-12-03 2.423243
18 1999-12-06 2.427858
19 1999-12-07 2.363238
20 1999-12-08 2.363238
21 1999-12-09 2.354007
22 1999-12-10 2.341083
23 1999-12-13 2.398318
24 1999-12-14 2.372470
25 1999-12-15 2.400164
26 1999-12-16 2.446321
27 1999-12-17 2.400164
28 1999-12-21 2.349391
29 1999-12-22 2.330005
30 1999-12-23 2.326313
31 1999-12-24 2.270924
32 1999-12-27 2.284772
33 1999-12-28 2.265386
34 1999-12-29 2.281079
35 1999-12-30 2.298619
也可以使用loc函数或者直接用列名组合,按指定的列名打印:
print(df.loc[:, ['date', 'close']])
print(df[['date', 'close']])
二者的输出结果均为:
date close
0 1999-11-10 2.561714
1 1999-11-11 2.558021
2 1999-11-12 2.589408
3 1999-11-15 2.561714
4 1999-11-16 2.450937
5 1999-11-17 2.509095
6 1999-11-18 2.494324
7 1999-11-19 2.481400
8 1999-11-22 2.441705
9 1999-11-23 2.441705
10 1999-11-24 2.439859
11 1999-11-25 2.437090
12 1999-11-26 2.441705
13 1999-11-29 2.430628
14 1999-11-30 2.437090
15 1999-12-01 2.455552
16 1999-12-02 2.424166
17 1999-12-03 2.433397
18 1999-12-06 2.368777
19 1999-12-07 2.363238
20 1999-12-08 2.356776
21 1999-12-09 2.341083
22 1999-12-10 2.397395
23 1999-12-13 2.392779
24 1999-12-14 2.400164
25 1999-12-15 2.441705
26 1999-12-16 2.400164
27 1999-12-17 2.361392
28 1999-12-21 2.330005
29 1999-12-22 2.321697
30 1999-12-23 2.287541
31 1999-12-24 2.284772
32 1999-12-27 2.269078
33 1999-12-28 2.270924
34 1999-12-29 2.276463
35 1999-12-30 2.284772
全部打印
如果想打印DataFrame的全部内容,则需要以下设置(也可以单独设置打印所有行或者列):
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)
输出结果如下:
date open high low close preclose volume \
0 1999-11-10 2.723263 2.750957 2.492478 2.561714 0.923140 174085055
1 1999-11-11 2.546020 2.619871 2.541404 2.558021 2.561714 29403491
2 1999-11-12 2.571868 2.612486 2.563560 2.589408 2.558021 15007963
3 1999-11-15 2.603255 2.607871 2.557098 2.561714 2.589408 11921071
4 1999-11-16 2.573714 2.582023 2.444475 2.450937 2.561714 23223120
5 1999-11-17 2.446321 2.509095 2.434320 2.509095 2.450937 10052566
6 1999-11-18 2.510941 2.546020 2.472169 2.494324 2.509095 8446529
7 1999-11-19 2.538635 2.541404 2.474015 2.481400 2.494324 5374994
8 1999-11-22 2.481400 2.487862 2.427858 2.441705 2.481400 5535421
9 1999-11-23 2.441705 2.450937 2.409395 2.441705 2.441705 3843966
10 1999-11-24 2.440782 2.450937 2.401087 2.439859 2.441705 4098001
11 1999-11-25 2.427858 2.461091 2.402010 2.437090 2.439859 5725292
12 1999-11-26 2.439859 2.461091 2.414011 2.441705 2.437090 2282685
13 1999-11-29 2.441705 2.476785 2.420473 2.430628 2.441705 2681243
14 1999-11-30 2.427858 2.446321 2.410319 2.437090 2.430628 2371355
15 1999-12-01 2.428781 2.483247 2.419550 2.455552 2.437090 2865195
16 1999-12-02 2.448167 2.466630 2.420473 2.424166 2.455552 1938487
17 1999-12-03 2.423243 2.460168 2.418627 2.433397 2.424166 2552574
18 1999-12-06 2.427858 2.432474 2.363238 2.368777 2.433397 6983999
19 1999-12-07 2.363238 2.386317 2.354007 2.363238 2.368777 3955769
20 1999-12-08 2.363238 2.378009 2.354007 2.356776 2.363238 2236538
21 1999-12-09 2.354007 2.358623 2.335544 2.341083 2.356776 2564635
22 1999-12-10 2.341083 2.409395 2.328159 2.397395 2.341083 3553913
23 1999-12-13 2.398318 2.441705 2.363238 2.392779 2.397395 7058409
24 1999-12-14 2.372470 2.400164 2.372470 2.400164 2.392779 1618462
25 1999-12-15 2.400164 2.483247 2.390933 2.441705 2.400164 6797886
26 1999-12-16 2.446321 2.446321 2.395548 2.400164 2.441705 3616200
27 1999-12-17 2.400164 2.412165 2.354930 2.361392 2.400164 3565329
28 1999-12-21 2.349391 2.358623 2.320774 2.330005 2.361392 4215311
29 1999-12-22 2.330005 2.340160 2.312466 2.321697 2.330005 3083548
30 1999-12-23 2.326313 2.335544 2.280156 2.287541 2.321697 4161561
31 1999-12-24 2.270924 2.314312 2.270001 2.284772 2.287541 2832485
32 1999-12-27 2.284772 2.307850 2.261693 2.269078 2.284772 2233778
33 1999-12-28 2.265386 2.315235 2.261693 2.270924 2.269078 3176686
34 1999-12-29 2.281079 2.305081 2.268155 2.276463 2.270924 2284237
35 1999-12-30 2.298619 2.306927 2.275540 2.284772 2.276463 2333169
amount adjustflag turn tradestatus pctChg peTTM \
0 4.859102e+09 2 54.401580 1 177.500000 77.815386
1 8.215822e+08 2 9.188591 1 -0.144147 77.703220
2 4.215916e+08 2 4.689988 1 1.226995 78.656634
3 3.329528e+08 2 3.725335 1 -1.069516 77.815386
4 6.289083e+08 2 7.257225 1 -4.324327 74.450397
5 2.689951e+08 2 3.141427 1 2.372885 76.217016
6 2.295779e+08 2 2.639540 1 -0.588668 75.768351
7 1.458871e+08 2 1.679686 1 -0.518139 75.375769
8 1.470862e+08 2 1.729819 1 -1.599697 74.169981
9 1.012245e+08 2 1.201239 1 0.000000 74.169981
10 1.073445e+08 2 1.280625 1 -0.075616 74.113898
11 1.505282e+08 2 1.789154 1 -0.113510 74.029773
12 6.050894e+07 2 0.713339 1 0.189398 74.169981
13 7.109958e+07 2 0.837888 1 -0.453689 73.833482
14 6.233574e+07 2 0.741048 1 0.265855 74.029773
15 7.628799e+07 2 0.895373 1 0.757579 74.590605
16 5.111024e+07 2 0.605777 1 -1.278196 73.637191
17 6.729188e+07 2 0.797679 1 0.380809 73.917607
18 1.805161e+08 2 2.182500 1 -2.655541 71.954696
19 1.014679e+08 2 1.236178 1 -0.233825 71.786446
20 5.721436e+07 2 0.698918 1 -0.273436 71.590155
21 6.513697e+07 2 0.801448 1 -0.665883 71.113449
22 9.104127e+07 2 1.110598 1 2.405358 72.823985
23 1.846560e+08 2 2.205753 1 -0.192527 72.683777
24 4.184514e+07 2 0.505769 1 0.308642 72.908110
25 1.804079e+08 2 2.124339 1 1.730772 74.169981
26 9.460148e+07 2 1.130062 1 -1.701326 72.908110
27 9.180740e+07 2 1.114165 1 -1.615385 71.730363
28 1.065240e+08 2 1.317285 1 -1.329164 70.776950
29 7.761409e+07 2 0.963609 1 -0.356577 70.524575
30 1.035579e+08 2 1.300488 1 -1.471169 69.487037
31 7.014272e+07 2 0.885152 1 -0.121068 69.402912
32 5.517069e+07 2 0.698056 1 -0.686869 68.926205
33 7.843031e+07 2 0.992714 1 0.081369 68.982288
34 5.643603e+07 2 0.713824 1 0.243900 69.150538
35 5.788824e+07 2 0.729115 1 0.364964 69.402912
pbMRQ psTTM pcfNcfTTM isST
0 17.418388 22.359317 0.0 0
1 17.393280 22.327087 0.0 0
2 17.606695 22.601039 0.0 0
3 17.418388 22.359317 0.0 0
4 16.665160 21.392428 0.0 0
5 17.060605 21.900045 0.0 0
6 16.960175 21.771126 0.0 0
7 16.872298 21.658322 0.0 0
8 16.602391 21.311854 0.0 0
9 16.602391 21.311854 0.0 0
10 16.589838 21.295739 0.0 0
11 16.571007 21.271567 0.0 0
12 16.602391 21.311854 0.0 0
13 16.527069 21.215165 0.0 0
14 16.571007 21.271567 0.0 0
15 16.696545 21.432715 0.0 0
16 16.483130 21.158763 0.0 0
17 16.545899 21.239337 0.0 0
18 16.106517 20.675318 0.0 0
19 16.068855 20.626974 0.0 0
20 16.024917 20.570572 0.0 0
21 15.918210 20.433596 0.0 0
22 16.301100 20.925098 0.0 0
23 16.269716 20.884811 0.0 0
24 16.319931 20.949270 0.0 0
25 16.602391 21.311854 0.0 0
26 16.319931 20.949270 0.0 0
27 16.056301 20.610859 0.0 0
28 15.842887 20.336907 0.0 0
29 15.786395 20.264390 0.0 0
30 15.554150 19.966266 0.0 0
31 15.535319 19.942094 0.0 0
32 15.428612 19.805118 0.0 0
33 15.441166 19.821232 0.0 0
34 15.478827 19.869577 0.0 0
35 15.535319 19.942094 0.0 0
从打印结果可以看出,所有的行列均被显示,由于列数较多,出现了换行显示列的情况。